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The design of catalysts for enantioselective hydrogenation 
of ketones remains a challenging endeavor. To date, few 
catalysts have been found to deliver chiral alcohol products with 
both high levels of absolute stereocontrol and high catalytic 
efficiencies.1 High enantioselectivities (>98% ee) have been 
observed in the hydrogenation of a variety of /?-keto esters using 
2,2'-bis(phosphino)-l,l'-biaryl-derived catalysts such as Ru-
BINAP,2 but high temperatures (80-100 0C) and/or high 
hydrogen pressures (100 atm) generally are required for reason
able catalytic rates in the absence of added acid cocatalysts.3 

Recent results suggest that electron-rich diphosphine ligands 
may play an important role in the attainment of high catalytic 
efficiencies in ketone and aldehyde hydrogenations.4 Given the 
demonstrated stereoinductive properties and electron-rich nature 
of our recently introduced bis(phospholane) ligands,5 we 
anticipated that catalysts derived from l,2-bis(/rans-2,5-dialkyl-
phospholano)benzene (DuPHOS) ligands and l,2-bis(frara.s-2,5-
dialkylphospholano)ethane (BPE) ligands may prove effective 
in asymmetric ketone reductions. We herein describe the 
development of new ('-Pr-BPE-Ru catalysts (('-Pr-BPE = 1,2-
bis(fran.s-2,5-diisopropylphospholano)ethane) that allow the 
highly enantioselective hydrogenation of/3-keto esters (1) under 
mild conditions (eq 1). Since the resulting /J-hydroxy esters 
(2) may be used to generate our phospholane ligands, we 
effectively have developed a reaction that can breed its own 
chirality.6 

Table 1. (/?,fl)-i'-Pr-BPE-Ru-Catalyzed Asymmetric Hydrogenation 
of /3-Keto Esters 1° 

(R1R)-Z-Pr-BPE-RuBr2 

OH 

CO2R' (1) 

Initial studies were aimed at uncovering the optimum bis-
(phospholane)-based catalyst for the hydrogenation of /3-keto 
esters to /3-hydroxy esters. A series of DuPHOS-RuB r2 and 
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" Reactions were carried out at 35 °C with an initial H2 pressure of 
60 psig and 0.25-0.10 M solutions of substrate in MeOH/H20 (9/1), 
using the catalyst precursor (fl,/?)-(-Pr-BPE-RuBr2 (0.2 mol %), unless 
otherwise stated. Reaction time allowed for complete (100%) conver
sion was 20 h. * Enantiomeric excesses were determined by chiral 
HPLC or chiral capillary GC, as described in the supplementary 
material. c Absolute configurations were assigned by comparing the sign 
of optical rotation of product or derivative with that of known alcohols 
(see supplementary material). ''Reaction time 96 h. ' Anti/syn ratio 24/ 
1. / Syn/anti ratio 1.4/1; ee for syn diastereomer not determined. 

BPE-RuBr2 catalyst precursors were prepared by reacting the 
DuPHOS and BPE ligands (R at 2,5-position of phospholanes 
= Me, Et, Pr, ('-Pr) with [(COD)Ru(2-mefhylallyl)2], followed 
by treatment with methanolic HBr in acetone.7 Scouting 
reactions were performed using the model substrate, methyl 
acetoacetate (1; R, R' = Me), and a standard set of reaction 
conditions (60 psig of H2, 0.4 mol % catalyst, 35 0C, 18 h). In 
order to suppress undesired formation of the /3-dimethylketal 
of methyl acetoacetate, a 10% water/methanol (v/v) solvent 
mixture was employed in these reactions. The results achieved 
with this series of catalysts indicated that the i-Pr-BPE-Ru 
catalyst was superior in terms of both rates and enantioselec
tivities (100% conversion, 99.3% ee). 

Further studies involving the (/?,/?)-('-Pr-BPE-Ru catalyst 
revealed that complete conversion could be achieved in just 4 
h under our standard conditions above, or over 10 h at, 22 0C, 
to yield (S)-(+)-methyl 3-hydroxybutyrate in 99.3% and 99.6% 
ee, respectively. For comparison, the analogous Ru-BINAP 
catalyst was prepared in the same fashion and afforded less than 
10% product under the latter conditions. Low conversions 
(< 10%) were observed with the (/?,/?)-('-Pr-BPE-Ru catalyst in 
('-PrOH and in aprotic solvents such as CH2Cl2 and THF. 
Interestingly, the choice of low-pressure conditions for our initial 
studies was fortuitous, as lower enantioselectivities were 
observed at higher hydrogen pressures (78% ee at 50 atm of 
H2; 71% ee at 100 atm of H2). 
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As shown in Table 1, a variety of/3-keto esters were smoothly 
hydrogenated to /8-hydroxy esters with very high enantioselec-
tivities using the (i?,.ff)-/-Pr-BPE-Ru catalyst (60 psi, 35 0C, 0.2 
mol % catalyst, 20 h). The nature of the ester group appeared 
to have little influence on the enantioselectivities. Virtually all 
substrates containing alkyl-substituted /3-keto groups were 
hydrogenated with enantioselectivities in the range 98 —* 99% 
ee. The substrate possessing a methoxymethyl group also was 
hydrogenated with high selectivity (95.5% ee, entry 7), although 
entry 8 shows that a chloromethyl substituent led to lower ee's. 
Methyl 2,2-dimethylacetoacetate (entry 10) was hydrogenated 
with high selectivity, although a longer reaction time (96 h) 
was necessary for complete conversion. This result, together 
with deuteration studies,8 suggests that, like the Ru-BINAP 
catalysts,9 the present /-Pr-BPE-Ru catalyst hydrogenates the 
keto form rather than the enol tautomer of /3-keto esters. High 
levels of both diastereoselectivity (24/1; antilsyn) and enanti-
oselectivity (98.3% anti; 96.4% ee syn) were attained through 
dynamic kinetic resolution9 in the hydrogenation of methyl 
2-oxocyclopentanecarboxylate (entry 11). 

Enantiomerically pure /3-hydroxy esters are valuable inter
mediates in synthetic and natural product chemistry.10 For 
example, entry 6 demonstrates the preparation of an important 
/3-hydroxy acid component of lipid A and analogues of the 
phospholipid subunit of endotoxin.11 Furthermore, enantio
merically pure /3-hydroxy esters have served as key intermedi
ates in our synthesis of a new class of chiral phospholane 
ligands.512 Thus, highly enantioselective hydrogenation of 
/3-keto esters under mild conditions using the /-Pr-BPE-Ru 
catalyst provides a direct route to the chiral precursors used to 
prepare the DuPHOS and BPE ligands. Interestingly, hydro
genation of ethyl isobutyrylacetate (entry 5) using the Ru catalyst 
derived from (i?,.R)-/-Pr-BPE afforded (tf)-ethyl 3-hydroxy-4-
methylpentanoate (99.0% ee), a chiral intermediate employed 
in the synthesis of the ('-Pr-BPE ligand. By converting this 
intermediate, as well as antipodal (S)-ethyl 3-hydroxy-4-
methylpentanoate, to the corresponding ligands as previously 
described,512 we thus have developed a self-generative process 
for production of the ('-Pr-BPE ligands. 
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Scheme 1. Asymmetric Catalytic Route to (5,S)-Cy-BPE 
Ligand 3 
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We also have used this process to synthesize new ligands 
such as (5,S)-Cy-BPE 3 via the route depicted in Scheme 1. 
Hydrogenation of methyl cyclohexanoylacetate13 (entry 9) using 
the (i?„R)-/-Pr-BPE-Ru catalyst provided (fl)-methyl 3-cyclo-
hexyl-3-hydroxypropionate (4) (99.1% ee). Following our 
previously outlined procedures,5,12 saponification and electro
chemical Kolbe coupling afforded the (RJi)- 1,4-dicyclohexyl-
1,4-butanediol (5) (>99.5% ee) in 42% yield for the three steps. 
Conversion of 5 to the diol cyclic sulfate 6, and reaction with 
1,2-diphosphinoethane in the presence of n-BuLi yielded (S,S)-
Cy-BPE (3) in enantiomerically pure form. The analogous Ru 
complex [(5,S)-Cy-BPE-RuBrI] also was found to serve as an 
excellent catalyst for /3-keto ester hydrogenations, producing 
(R)-(—)-methyl 3-hydroxybutyrate in 98.6% ee and (5>methyl 
3-cyclohexyl-3-hydroxypropionate (4) in 98.2% ee. The latter 
product is an intermediate in the synthesis of the Cy-BPE ligand 
3 and thus provides another example of ligand self-generation. 

We have developed a non-biarylphosphine-based catalyst 
system that is broadly effective for the highly enantioselective 
hydrogenation of a range of /3-keto esters. The /-Pr-BPE-Ru 
catalyst performs efficiently under low hydrogen pressures and 
provides practical access to valuable /3-hydroxy esters, which 
among other applications may be used for the synthesis of new 
chiral phospholane ligands. Rare examples of "asymmetric 
ligand breeder" processes have been developed for the self-
generative synthesis of the /-Pr-BPE and Cy-BPE ligands. 
Further applications of bis(phospholane)—Ru catalysts in enan
tioselective ketone hydrogenations currently are being examined. 
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